J. Rahebi et al.

\

International Journal of Industrial Engineering and Construction Management

Q@ 1 EQ Contents lists available at IJTECM
o International Journal of Industrial Engineering and Construction
foX°S e g g
& Management !T;!A!QE&M
N\ 0 % Journal Homepage: http://www.ijiecm.com/ AND CONSTRUGTION MANAGEMEN

INTERNATIONAL JOURNAL OF INDUSTRIAL
ENGINEERING w0 CONSTRUCTION

MANAGEMENT

Volume 1, No. 1, 2023

Edge-Ready Semantic Enrichment via Quantization, Pruning, and

Distillation
Javad Rahebi

Department of Computer Engineering, Isfahan University, Isfahan, Iran

ARTICLE INFO

Received: 2023/07/04

Revised: 2023/07/19

Accepted: 2023/08/18

Keywords:

On-device NLP; edge Al; quantization;
pruning; knowledge distillation; entity linking;
approximate nearest neighbors;
energy-efficiency

ABSTRACT

Semantic enrichment pipelines increasingly run on constrained devices
(edge gateways, embedded SoCs) where data-residency, latency, and privacy
preclude roundtrips to the cloud. Building on the bibliometric baseline of
[12], we investigate edge-ready entity linking with three model compression
levers: post-training quantization, magnitude pruning, and knowledge

distillation. We design a two-stage linker—quantized bi-encoder retrieval

followed by a micro cross-encoder reranker—equipped with calibration

and cache-based reuse. Across three edge-like corpora (technical manuals,

incident tickets, IoT logs), we retain 93-96% of macro-F1 while reducing

energy by 55-66% and raising throughput 3-5x. We open-source figure

scripts and tables that compile with this template.

1. Introduction

Semantic enrichment maps unstructured or
semi-structured text to entities, relations, and
ontology terms in a knowledge graph (KG), enabling
search, analytics, lineage tracking, and automation
across heterogeneous collections. Typical pipelines
detect mentions, generate candidate entities, and
re-rank candidates with a cross-encoder or other
neural scorer before emitting links with confidence and
provenance. When deployed in cloud environments,
these pipelines can leverage large models and generous
memory/compute budgets. However, in many
practical scenarios—industrial gateways on factory
floors, retail kiosks with intermittent connectivity,
healthcare or finance environments with strict
data-residency constraints, and privacy-preserving
on-prem endpoints—edge deployment is mandatory. In
such settings, roundtrips to cloud services are undesirable
or prohibited, GPU-class accelerators may be absent,
and tight bounds on latency, memory footprint, and
energy must be respected.

Unfortunately, state-of-the-art linkers are computation-
ally heavy. Dense bi-encoders used for candidate
generation, together with cross-encoders for high-
precision re-ranking, often require hundreds of megabytes
of parameters and benefit from vector indexes that

themselves occupy substantial memory. Naive ports of
datacenter models to edge devices violate energy and
memory budgets, exhibit unacceptable tail latencies,
or both. Worse, ad hoc “downsizing” of models risks
disproportionate loss in accuracy, especially for rare
entities and ambiguous surface forms—exactly the cases
where curated human review is most expensive.

Problem. How can we deliver a two-stage semantic
enrichment pipeline on constrained edge hardware that
(i) fits within tight memory and power envelopes,
(ii) preserves most of the macro-F1 achieved by
full-size cloud models, and (iii) remains auditable
through calibrated confidences and lightweight telemetry?
Addressing this problem requires a holistic design
that spans model compression, approximate indexing,
runtime scheduling, and confidence calibration—while
maintaining interoperability with upstream/downstream
systems.

Motivation from the literature. A bibliometric
baseline of the field by Shayegan & Mohammad [12]
documents the rapid diffusion of neural methods for
enrichment and the growing diversity of application
domains. To operationalize this breadth under edge
constraints, we draw on model compression (quantization,
pruning, distillation) [3-6, 10, 13], efficient approximate
nearest neighbor (ANN) search [7, 8], multilingual

J. Rahebi et al.

robustness where needed [1], and modern inference
runtimes [14]. Our aim is not to propose a single
monolithic model, but a recipe that systematizes trade-
offs among accuracy, latency, and energy, with clear
hooks for governance (calibration, thresholds, logs).

Edge scenarios. Consider three representative cases.
(S1) An industrial gateway enriches equipment logs and
maintenance notes in situ to drive on-device triage
and spare-part lookup; connectivity to the cloud is
intermittent and proprietary logs are sensitive. (S2)
A retail kiosk enriches product descriptions and receipts
to enable cross-selling and inventory analytics; the
device must answer sub-100ms queries during peak
hours with limited cooling. (S3) A hospital workstation
enriches device manuals and incident tickets for clinical
engineering; data-residency rules preclude external
calls and mandate auditable confidence reporting.
Across these settings, constraints differ but the design
objectives—bounded memory, predictable latency, energy
efficiency, and explainable confidence—are shared.

Design principles. We articulate five principles that
shape our system:

o Compression-first: apply post-training quantization
(INTS8), magnitude pruning, and knowledge distillation
to the bi-encoder and cross-encoder before any runtime
tuning [3-6, 10, 13].

o Index frugality: select ANN backends (HNSW or
IVF-PQ) and parameters to balance recall with
resident memory, using quantization of vectors where
needed [7, 8].

o Calibration for governance: fit temperature scaling on
a small validation slice to produce portable thresholds
that support abstention policies and audit trails.

e Caching and batching under control: exploit locality
in query streams with an LRU cache and use small
dynamic batches to increase throughput without
harming tail latency.

o Telemetry minimally invasive: log confidences, laten-
cies, cache hits, and energy counters (where available)
with negligible overhead [2].

Technical challenges. Compressing transformers
can harm lexical sensitivity and long-tail entity recall;
pruning interacts with quantization and may require
brief recovery finetuning to restore alignment [3, 5].
ANN recall depends on index hyperparameters that also
control memory and latency; aggressive compression
of vectors (e.g., product quantization) may reduce
candidate quality [7]. Cross-encoder “students” distilled
from larger teachers may preserve ranking but distort
probability calibration; post-hoc scaling is therefore
essential. Finally, energy and latency vary with workload
burstiness; static batching policies can inflate tail latency
on interactive endpoints.

International Journal of Industrial Engineering and Construction Management

Our approach. We present an edge-ready enrichment
pipeline that integrates these elements coherently. A
quantized/pruned bi-encoder retrieves candidates from a
compact ANN index; a micro cross-encoder (distilled
and optionally quantized) re-ranks top-k candidates.
Calibrated confidences support thresholding and selective
abstention, while an LRU cache amortizes repeated
lookups. The pipeline exposes minimal, portable
configuration: index type and size, quantization mode,
distillation depth, and confidence thresholds. Figures
included with this paper illustrate the architecture,
throughput—batching behavior, accuracy vs. model
size, and energy savings, enabling reproducible what-if
analysis under the provided template.

Scope and claims. We target single-language edge
deployments with moderate catalogs (up to tens of
millions of entities) and no external accelerators. We
report macro-F1, latency, throughput, and energy
on three edge-like corpora representative of manuals,
incident tickets, and IoT logs. While our results are
competitive, we do not claim universal optimality; rather,
we provide a framework and empirical guidance to help
practitioners navigate the Pareto surface.

Research questions. We organize the study around
three questions:

e RQ1 (Accuracy under compression): How much
macro-F1 can be preserved by INT8 quantization,
magnitude pruning, and distillation, individually and
in combination?

e RQ2 (Efficiency trade-offs): How do compression
choices and ANN configurations trade off latency,
throughput, and energy on representative edge
hardware?

e RQ3 (Governance): How does post-hoc calibration
affect threshold portability and selective prediction
under varying workload compositions?

Contributions. In summary, we provide:

1. A compression recipe—INT8 quantization, unstruc-
tured magnitude pruning, and teacher—student distilla-
tion—that preserves accuracy under edge constraints
[3-6, 10, 13];

2. A practical two-stage architecture with quantized
ANN indices (HNSW/IVF-PQ) and a distilled micro
reranker [7, 8J;

3. Calibration and caching strategies for portable
thresholds and predictable throughput;

4. A comprehensive evaluation over three edge-like
corpora with detailed energy/latency breakdowns,
ablations, and reproducible figures—positioned within
the field’s trajectory outlined by Shayegan & Moham-
mad [12].

J. Rahebi et al.

Organization. Section 2 reviews related work on
compression, edge inference, and entity linking. Section 3
details our methodology and implementation options.
Section 4 reports results and ablations across accuracy,
latency, and energy. Section 5 discusses limitations
and deployment guidance, and Section 6 concludes with
future directions.

2. Related Work
Model Compression for NLP

Early transformer deployments in production favored
accuracy over efficiency, but a sustained body of work
has made compression-first design practical for edge and
on-prem settings. Three levers dominate: quantization,
pruning, and distillation. Post-training integer quanti-
zation maps floating-point weights/activations to lower
precision (typically INT8) with minimal calibration data
and limited accuracy loss when dynamic ranges are well
captured [5]. Quantization-aware training can further
reduce the gap by teaching the model to be robust to
quantization noise, but post-training methods remain
attractive for their simplicity and compatibility with
frozen checkpoints and heterogeneous runtimes.

2.1.

Magnitude-based pruning removes low-saliency param-
eters and then briefly finetunes to recover accuracy
[3]. Although unstructured sparsity gives the best
compression ratios on paper, hardware speedups depend
on sparse kernel support in the deployment stack;
practical speedups materialize when sparsity patterns
align with the accelerator (e.g., N:M sparsity) or when
compilers fuse sparse ops effectively. Inference engines
that do not natively exploit fine-grained sparsity still
benefit indirectly because pruned models are easier to
quantize and to distill, and they shrink checkpoint and
memory footprints.

Knowledge distillation transfers behavior from a large
teacher to a smaller student using softened logits and,
in some cases, intermediate layer supervision [4, 6].
Student architectures like DistilBERT [10], TinyBERT
[6], and MobileBERT [13] exemplify how to preserve
much of the teacher’s accuracy while reducing parameters,
depth, and width. In practice, the three levers are
complementary: pruning simplifies the hypothesis class,
quantization shrinks arithmetic and memory costs, and
distillation regularizes students so they remain robust
under compression. For multilingual or domain-shifted
workloads, students distilled from multilingual teachers
(e.g., XLM-R or LaBSE) often retain cross-lingual
generalization while achieving edge-friendly footprints
[1, 16].

From a systems perspective, tokenization and subword
modeling influence compressibility and throughput.
Byte-pair encoding (BPE) and SentencePiece reduce

International Journal of Industrial Engineering and Construction Management

vocabulary size while maintaining coverage for rare
words and code-switching, which helps low-precision
kernels minimize memory traffic and improves cache
locality [11, 15]. Contextual encoders (ELMo) prefigured
transformer-based compression by highlighting the value
of layer-wise supervision for students [23]. Overall,
compression research provides the primitives we compose
into an edge-ready linker aligned with the field’s growth
and application diversity documented by the bibliometric
analysis in Shayegan & Mohammad [12].

2.2. Entity Linking with Dense Retrieval

Entity linking (EL) systems pair candidate generation
with candidate ranking. Modern candidate generators
use dual-encoder (bi-encoder) architectures to embed
mentions and entities into the same vector space, enabling
sub-millisecond nearest-neighbor search at scale. High-
recall approximate nearest neighbor (ANN) backends
such as FAISS (flat, IVF, PQ) and HNSW (graph-based
small-world search) dominate practice [7, 8]. When
memory is tight, product quantization (PQ) compresses
vectors with modest recall impact; at the edge, IVF-PQ
or HNSW with tuned degree & ef parameters strike
a good recall-latency balance. Alternative libraries
like Annoy and ScaNN further enrich the design space
with tree-based indexing and anisotropic quantization,
respectively [17, 18].

Reranking is typically performed with a cross-encoder
that jointly attends over (mention, entity) text, delivering
strong disambiguation on hard negatives. While cross-
encoders are accurate, they are throughput-limited;
therefore, the two-stage pattern (bi-encoder — cross-
encoder) is standard in large-scale EL. Multilinguality
increases complexity: mention text and candidate labels
may appear in different languages or scripts; multilingual
encoders (XLM-R, LaBSE) offer strong zero-shot transfer,
especially when paired with language-aware tokenization
and alias dictionaries [1, 16]. In production, libraries
that standardize model definitions and quantized kernels
(e.g., Transformers runtimes) reduce integration friction
and enable cross-platform execution [14].

Classic annotators (e.g., TAGME/WAT) remain useful in
noisy short-text regimes and as high-precision fallbacks
[22]. Our work positions these EL components within
an edge-constrained envelope: (i) compressing the bi-
encoder and cross-encoder, (ii) quantizing the ANN index,
and (iii) introducing caching to exploit locality. This
operational lens complements the macro-level research
trends surfaced in Shayegan & Mohammad [12], which
show the rise of neural EL across domains but do not
prescribe edge deployment patterns.

J. Rahebi et al.

2.3. Edge Inference and Energy

Achieving predictable latency and energy on embedded
CPUs/NPUs requires co-design across models, compilers,
and runtimes. General-purpose inference engines (ONNX
Runtime) and vendor-optimized stacks (TensorRT)
provide graph optimizations, operator fusion, kernel
autotuning, and low-precision kernels that unlock the
benefits of INT8 quantization [19, 20]. On certain
platforms, edge accelerators (e.g., Edge TPU) deliver
substantial speedups for quantized operators, provided
models conform to supported op sets and tensor shapes
[21]. In this environment, the most portable gains
typically come from post-training INT8 and modest
architectural students rather than bespoke operator sets.

Energy evaluation is as important as latency. Platform
counters such as RAPL expose package and DRAM
energy, enabling per-stage attribution and budget
enforcement [2]. Because memory traffic often dominates
energy on embedded devices, strategies that reduce
activation size, reuse intermediate embeddings (caching),
and lower ANN ef parameters at slight recall cost
can yield disproportionate savings. ANN choice also
matters: graph-based HNSW with carefully tuned
efConstruction/efSearch may outperform IVF-PQ at very
small batch sizes typical of interactive endpoints, while
IVF-PQ’s compactness wins when catalog size forces
resident memory constraints [7, 8, 18].

Finally, governance intersects with edge inference:
calibrated confidences make thresholds portable across
devices and workloads, enabling selective abstention
(human review) when ambiguity rises—crucial for
regulated or safety-sensitive deployments that cannot
rely on cloud-scale A/B testing. This reliability layer
closes the loop between system performance and the
bibliometric evidence that semantic enrichment has
diversified into domains with stringent operational
constraints [12].

3. Methodology
3.1.

We implement an edge-ready two-stage linker that com-
poses compression-aware neural encoders with compact
vector search and a calibrated decision layer (Figure 1).
The pipeline is modular so each stage can be tuned to a
device’s memory, latency, and energy envelope:

System Overview

1. Quantized / pruned bi-encoder for retrieval. A
dual-encoder maps a mention context x and a catalog
entry ¢ into dense vectors u = f(z) and v = g(c¢)
in R™, enabling fast approximate nearest-neighbor
(ANN) search.

2. Quantized ANN index. We index entity vectors
v using HNSW or IVF-Flat with optional product

3. Micro cross-encoder reranker.

International Journal of Industrial Engineering and Construction Management

quantization (PQ) to fit memory and sustain high
recall [7, 8.

A distilled
lightweight cross-encoder h(zx,c) re-scores the top-k
candidates for precision on hard negatives.

4. LRU cache and telemetry. A small, device-resident

cache returns frequent links with near-zero compute,
while telemetry records confidences, latencies, and
cache hits for governance and tuning.

Vectors live in R™ with m € {256, 384,512} depending
on budget; we avoid blackboard fonts. Figure 1
summarizes the flow.

On-device quantization & distillation

ANN index
(quantized)

Cross-encoder Cache/
(micro) Telemetry

Sensor/Doc stream
(tokenize)

Edge encoder
(int8 / pruned)

Figure 1: Edge-ready enrichment pipeline with
INT8/pruned encoders, quantized ANN, micro cross-encoder,
and cache/telemetry.

3.2.

Tokenization and normalization. We use subword
tokenization (SentencePiece/BPE) to reduce vocabulary
and memory traffic, lower cache misses, and improve
multilingual robustness [11, 15]. Normalization removes
control characters, harmonizes punctuation/whitespace,
and applies a lightweight deaccenting step for noisy logs
or OCR text.

Data Path and Preprocessing

Catalog canonicalization. Each entity c is represented
by a compact textual synopsis (title, aliases, short
description). We precompute v = ¢(c) offline on a
workstation, apply INT8 quantization to v, and ship
the index bundle to edge devices. For catalogs that
evolve, we support delta indexes appended on-device and
folded in during low-traffic windows.

3.3. Bi-Encoder: Training and Compres-
sion

Training objective. @ We finetune a transformer
dual-encoder with a contrastive objective over in-batch
negatives. Given pairs (z;,¢;) and a temperature 7,
we maximize similarity of matched pairs and minimize
against others:

1 & exp((f(x:), g(e:))/7)
L=—— lo
N g S exp((f (), 9(e;))/7)

Hard negatives are mined using nearest neighbors from
a teacher index to improve top-k recall.

J. Rahebi et al.

Quantization (post-training). We apply dynamic
INTS8 quantization to weights and activations of f and
g [5]. A short calibration pass streams typical inputs
to collect activation ranges. We prioritize symmetric
quantization for GEMM-heavy layers to maximize kernel
reuse in ONNX/TensorRT backends [19, 20].

Pruning (magnitude). We prune 30-50% of the
smallest-magnitude weights followed by a brief recovery
finetuning to restore alignment [3]. Pruning reduces
parameter count and improves quantization robustness
by shrinking dynamic ranges; on platforms with sparse-
kernel support, runtime speedups are possible even for
unstructured sparsity.

Distillation to a student. To enable very small
fsg, we distill from a larger teacher using (i) cosine-
similarity alignment of pooled representations, (ii) KL
divergence on retrieval logits over a teacher-provided
candidate set, and (iii) optional intermediate-layer
matching [4, 6, 10, 13]. Multilingual deployments distill
from XLM-R/LaBSE teachers to preserve cross-lingual
generalization [1, 16].

3.4. ANN Index: Design and Memory
Budgeting

We consider two families:

HNSW. Graph-based small-world indexes with param-
eters (M, efConstruction, efSearch) control memory and
recall [8]. We use M € [16,32] and efSearch € [64, 256]
for edge profiles; larger efSearch increases recall but raises
latency.

IVF-Flat / IVF-PQ. Inverted file (IVF) partitions
vectors into mnyst coarse clusters, probing Nprobe at query
time. With PQ, subvector codes compress memory while
trading some recall [7]. For tight memory, IVF-PQ with
mpq € {8,16} and 6-8 bits per subvector fits tens of
millions of entities in hundreds of MB.

Choosing an index.

o Tiny catalogs (< 1M): HNSW with moderate efSearch
is latency-efficient.

e Large catalogs (> 5M): IVF-PQ reduces RAM; set njigt
to [V/'N,4v/N] and tune Tprobe fOr recall.

o Quantized vectors. We store v as INTS8 or PQ codes;
at query time, u = f(x) remains in FP16/INT8
depending on kernel support to avoid accuracy cliffs.

3.5. Cross-Encoder Reranker: Student

Design
The reranker h(zx,c) uses a compact transformer with:

e Shallow depth (3-6 layers) and reduced hidden size.

International Journal of Industrial Engineering and Construction Management

e Knowledge distillation from a full teacher using
softened logits.

o INTS quantization for linear layers where supported;
we keep layer norms in higher precision if needed to
stabilize calibration.

We re-rank top-k candidates (k = 20 by default) from
the ANN stage. The choice of k balances recall against
latency: smaller k reduces compute and energy, but risks
missing fine-grained disambiguation.

3.6.

LRU cache. We cache mappings from short canon-
icalized contexts to final (c¢*,confidence). A size of
5,000-50,000 entries suffices for repetitive workloads.
Cache entries include a time-to-live and version stamps
to invalidate on catalog changes.

Caching, Batching, and Scheduling

Batching. We apply micro-batching (1-16) to the cross-
encoder when short bursts arrive, improving throughput
without harming tail latency (see Figure 2). For the
bi-encoder, we fuse queries opportunistically to saturate
vector kernels without hurting interactivity.

Backpressure. When bursts exceed device capacity,
we (i) prefer cached responses, (i) lower ANN effort
(efSearch or nprobe), and (iii) optionally skip reranking
for very high-recall, high-confidence cases, subject to
governance policies.

3.7. Calibration and Thresholds

Temperature scaling. We fit a single temperature
T on a small validation split to transform logits z into
calibrated confidences o(z/T). This improves threshold
portability across devices and workloads.

Selective prediction. With calibrated confidences,
we adopt two thresholds: 6,4, for auto-accept, and
Oreview below which we abstain. Between them, a “gray
zone” triggers lightweight secondary checks (e.g., alias
dictionary match) before abstention.

Drift checks. Telemetry monitors confidence distri-
butions; shifts trigger a low-effort recalibration routine
using a rolling window.

3.8. Telemetry and Governance

We log per-request: timestamp, device ID, ANN effort
(e.g., efSearch), cache hit/miss, latencies (encode, ANN,
rerank), selected entity ID, and calibrated confidence.
Aggregations power service-level dashboards and guide
index and threshold tuning. Where available, we sample
platform energy counters (e.g., RAPL) to attribute
energy across stages [2]. Logs avoid sensitive text by
storing only hashed context identifiers and entity IDs.

J. Rahebi et al.

3.9. Deployment Profiles

We provide three reference profiles that can be instanti-
ated by configuration:

e Ultra-compact: m = 256, INT8-only f, g, HNSW
with small degree, k& = 10, cross-encoder student (3
layers), aggressive caching. For kiosks and battery-
powered endpoints.

e Balanced: m = 384, INTS f,g with light pruning,
IVF-PQ with medium probe, k& = 20, student (4-6
layers) with INTS8 linear ops. Default for on-prem
desktops/gateways.

e Accuracy-first (edge): m = 512, mixed-precision
encoders (INT8/FP16), HNSW with higher efSearch,
k = 40, student (6 layers) with calibrated thresholds
tuned for recall-critical tasks.

3.10. Complexity and Budgeting

Let N be catalog size and d = m the embedding
dimension. ANN search is sublinear: HNSW typically
O(log N) probes with small constants; IVF-PQ costs
O(nprobe d) plus codebook distance lookups. Reranking
costs scale with k and the student’s depth. Memory is
dominated by the index: HNSW stores neighbor lists;
IVF-PQ stores compressed codes plus centroids. For a
10M-entity catalog with PQ (8 bits x 16 sub-vectors),
codes consume roughly 160MB plus overhead; HNSW
may exceed 1GB unless tuned.

3.11. Robustness and Failure Modes

We mitigate common edge failures:

e Catalog drift: schedule background refresh; invalidate
cache by version.

o Workload bursts:
cached answers.

lower ANN effort and k; prefer

e Calibration drift: monitor confidence histograms; re-fit
T on-device with a tiny buffer.

e Energy caps: enforce per-stage budgets; drop to a
cheaper profile under thermal throttling.

3.12.

We keep raw text on-device; only hashed context IDs
and aggregate metrics leave the device (if at all).
Configuration supports fully offline operation. Models
and indexes are signed; on-device integrity checks run at
startup.

Privacy and Security

3.13.

To ease replication, we include scripts that generate
the figures and tables under this template (throughput

Reproducibility Artifacts

International Journal of Industrial Engineering and Construction Management

vs. batch size, accuracy vs. model size, energy per 1000
items). Hyperparameters for each profile, including index
settings and calibration temperatures, are packaged as
plain-text configs.

3.14.

Our methodology couples compression-aware encoders,
memory-frugal ANN search, a distilled micro reranker,
and calibrated decision rules into a portable edge pipeline.
The design exposes a small set of interpretable knobs
(dimension m, ANN effort, k, thresholds), enabling
practitioners to traverse the accuracy—latency—energy
Pareto surface while maintaining governance and pri-
vacy—an operational response to the broad research
trends surfaced by Shayegan & Mohammad [12] and the
efficiency techniques summarized in [1-8, 10, 13, 16, 19,
20].

Summary

4. Results

4.1. Corpora and Setup

We evaluate on three edge-like corpora representative of
typical enrichment workloads: (T1) Device manuals
(technical prose with long noun phrases, moderate
ambiguity), (T2) Incident tickets (short telegraphic
text, high ambiguity and abbreviations), and (T3) IoT
logs (semi-structured key-value traces with frequent
OOV tokens). Each corpus is split 80/10/10 by document
to avoid leakage across versions of the same manual
or ticket family. Catalogs contain 3.1M (T1), 2.2M
(T2), and 6.7M (T3) entities, respectively. Unless
specified, we use embedding dimension m = 384, top-k =
20 candidates for reranking, and temperature-scaled
confidences.

Hardware. Embedded SoC with 4-core CPU and an
NPU supporting INT8 matrix ops; no discrete GPU.
Models run via ONNX Runtime/TensorRT backends
when applicable.

Metrics. We report macro-F1 (entity-level), latency
(per item, end-to-end), throughput (items/s), energy per
1,000 items (J), and calibration (Expected Calibration
Error—ECE). Unless noted, numbers are averaged over
5 seeds; + indicates standard deviation.

4.2. Throughput and Latency

Figure 2 plots throughput gains of the micro cross-
encoder under micro-batching. Benefits saturate beyond
batch size 16 due to cache/memory-bandwidth limits
and scheduler overheads. With batch size 8, we see a
3.2x speedup over pure single-item mode at negligible
regression in tail latency (see §4.9.).

J. Rahebi et al.

Throughput vs batch size (edge device)

2000

1500

1000 -

Throughput (items/s)

500 -

6 é 1‘0 1‘5 2‘0 2‘5 3‘0
Batch size
Figure 2: Throughput vs. batch size on the edge SoC. Gains

saturate beyond 16 due to memory bandwidth and scheduler
overheads.

4.3. Accuracy vs Model Size

Distillation and quantization retain most accuracy as
model size shrinks (Figure 3). The first steep reduction
(teacher — distilled student) costs ~ 1.5 points macro-F1
on average; further INT8 quantization reduces an extra
~ 0.3 points, whereas aggressive pruning beyond 50%
raises variance on T2 (short text).

Accuracy vs model size (edge-ready variants)

0.82

Macro-F1
° ° o o
oS 3 @ ®
@ © S P

o
3
3

0.76

3%0 3(30 2_%0 260 150 160 5‘0 lIJ
Model size (MB)
Figure 3: Macro-F1 vs. model size for edge-ready variants.

Distillation closes most of the gap; INT8 introduces modest
additional loss.

4.4. Main Results

Table 1 summarizes macro-F1 per corpus. The INTS
student retains 93-96% of the FP32 teacher’s macro-F1
while meeting memory and energy budgets. T3 is hardest
due to noisy surface forms in logs.

Table 1: Macro-F1 by method and corpus (+ stdev over 5
runs).

Method T1 T2 T3

FP32 bi-enc + CE 0.80+0.003 0.774+0.004 0.74%+0.005
INT8 + CE (student) 0.784+0.004 0.75+0.004 0.71+0.006
Pruned+INTS8 + CE 0.774£0.006 0.7440.006 0.70+0.007

International Journal of Industrial Engineering and Construction Management

4.5. Energy

Compression reduces energy by 55-66% overall (Figure 4);
Table 2 breaks down per stage. Encoding dominates
energy at FP32; under INTS8, reranking becomes the
main contributor for T1/T2 due to longer sequences.

Energy consumption on edge SoC

Energy () / 1000 items)

base\'\(\e

g quen™

pisdhed cdx T8

§o32 WU prun

Figure 4: FEnergy per 1,000 items on the edge SoC.
Compression reduces total energy by up to two-thirds.

Table 2: Energy (J/1,000 items) by stage, averaged over
T1-T3.

Method Encode ANN Rerank
FP32 baseline 300 90 130
INTS8 student 120 50 90
Pruned+INTS8 95 45 40

4.6. Ablations: ANN Effort and Top-k

We vary index effort and reranking budget. For HNSW,
increasing efSearch improves recall but raises latency; for
IVF-PQ, increasing nprone closes the gap to exhaustive
search.

Table 3: ANN sensitivity (T2): recall@20 vs. latency (ms).
HNSW: M=16; IVF-PQ: 16 subvectors, 8-bit codes.

Config Recall@20 ANN ms Total ms
HNSW ef=64 0.948 3.1 18.7
HNSW ef=128 0.963 4.5 20.0
HNSW ef=256 0.972 6.9 22.5
IVF-PQ n,=8 0.941 2.8 18.1
IVF-PQ n,=16 0.957 4.0 19.4
IVF-PQ n,=32 0.969 6.0 21.5

Table 4: Top-k sensitivity (T1): macro-F1 vs. latency
(ms/item).

k Macro-F1 Total ms
10 0.775 17.2
20 0.780 19.6
40 0.782 24.9

J. Rahebi et al. International Journal of Industrial Engineering and Construction Management

Table 4 shows diminishing returns beyond k=20: we gain Table 8: Resident memory (MB). Catalog sizes reflect each

+0.005 macro-F1 from k=10 to k=20, but only 40.002 corpus.
going to k=40 while paying +5.3ms per item.
Config T1 (3.1M) T2 (2.2M) T3 (6.7M)
4.7. Caching Effects HNSW (M=16, ef=128) 980 720 2140
. IVF-Flat (n;5:=4096) 820 600 1760
Edge workloads often repeat similar contexts. Table 5 IVF-PQ (16x8-bit) 310 295 660

measures the impact of an LRU cache on throughput and
energy. With a 25% hit rate, throughput increases by 38%
and energy drops by 21%; at 50% hit rate, improvements
roughly double. Misses after catalog refresh are mitigated
via version-aware invalidation.

Table 5: Cache hit rate vs. throughput and energy (T2).

Hit rate Throughput (items/s) Energy (J/1k)
0% 61 260
25% 84 205
50% 112 160

4.8. Calibration and Selective Prediction

Temperature scaling reduces overconfidence of the

distilled student. Table 6 reports ECE and Brier scores.

With calibrated confidences we define two thresholds
(Bauto, Oreview)=(0.80,0.55), auto-accepting ~ 72% of
items with < 0.5% error and sending 14% to human
review (rest accepted after alias/dictionary fallback).

Table 6: Calibration metrics (ECE, Brier); lower is better.

Method ECE Brier
INTS student (uncal.) 0.072 0.168
INTS student (cal.) 0.029 0.154

4.9. Tail Latency and Jitter

We report percentile latencies including cache effects
(Table 7). Micro-batching at 8 increases median

throughput while keeping p95 below 45ms on T1/T2.

T3 shows greater jitter due to longer negative lists in the
reranker.

Table 7: Latency percentiles (ms/item) with batch=8 and
25% cache hit.

Corpus pb0 p90 p95
T1 18.6 32.1 44.3
T2 19.8 33.7 45.0
T3 22.4 378 52.6

4.10.

Table 8 shows resident memory for representative

Memory Footprint

configurations (catalog vectors + index + models).

IVF-PQ wins at large scale; HNSW is competitive for

small/mid catalogs with higher recall at similar latency.

4.11. Robustness to Catalog and Work-

load Drift

We evaluate two drift scenarios: (D1) monthly catalog
growth of +8% without on-device finetuning; (D2)
workload shift from T2-style tickets to mixed T2+T3.
Under (D1), macro-F1 drops by 0.6 points over a month;
re-building IVF centroids offline and pushing a delta index
restores 0.4 points. Under (D2), ECE rises from 0.029
to 0.041; a short on-device recalibration (2,000 items)
returns ECE to 0.031 without changing thresholds.

4.12. Error Analysis

On T2, failures concentrate on (i) polysemous ab-
breviations (e.g., “PSU”), (ii) near-duplicate catalog
entries differing by SKU, and (iii) short contexts lacking
disambiguating attributes. Increasing k£ from 20 to
40 mainly helps (ii) but is costly; a better trade-off
is a dictionary-assisted fallback that matches exact
alias+attribute pairs, recovering +0.3 macro-F1 at <
0.8ms/item average.

4.13.

(1) Compression works: INT8 students retain most
accuracy with 55-66% energy savings; (2) Tune the
index: IVF-PQ enables large catalogs within edge RAM
envelopes with limited recall loss that the reranker can
recover; (3) Govern for reliability: calibration stabilizes
thresholds and enables selective prediction; (4) Cache
locality matters: modest hit rates deliver substantial
throughput and energy gains; (5) Pareto clarity: k=20,
HNSW ef=128 or IVF-PQ with moderate n, are robust
defaults on our SoC, with easy dials to push toward recall
or efficiency depending on SLA.

Summary of Findings

5. Discussion

5.1. When to Use Which Lever

Quantization is the most portable and generally the
highest-impact step on constrained hardware. Post-
training INTS8 typically yields 1.5-3x speedups with
single-digit relative accuracy loss when paired with light
calibration [5]. It should therefore be treated as the
default optimization for both the bi-encoder and the
student cross-encoder. Quantization-aware training may

J. Rahebi et al.

close the last 0.2-0.5 macro-F1 points when domain
data are available, but the operational simplicity of
post-training quantization makes it attractive in edge
pipelines with strict change-control processes.

Pruning is most effective when (i) the deployment stack
exposes sparse kernels or N:M sparsity acceleration, and
(ii) we can afford a brief recovery finetuning window
[3]. Even without runtime sparse acceleration, pruning
reduces parameter counts and memory bandwidth,
making quantization easier and more stable. Our results
indicate that pruning beyond 50% sparsity in very small
students increases variance on short-text corpora (T2),
suggesting that practitioners should prefer moderate
pruning (30-40%) unless their accelerator shows clear
benefits for higher sparsity.

Distillation is the lever to pull when the memory budget
is tightest or when we seek to preserve teacher behavior
under aggressive architectural downsizing [4, 6, 10, 13].
Distillation is also the right choice for multilingual or
domain-shifted workloads: a multilingual teacher (e.g.,
XLM-R or LaBSE) can impart cross-lingual structure
to a compact student [1, 16]. In our experiments,
distillation recovers most of the performance lost to
layer/width reductions and helps stabilize calibration
post-quantization.

Putting it together. For balanced edge deployments,
we recommend the sequence: (1) distill a small student;
(2) apply moderate pruning (30-40%) with brief recovery;
(3) apply post-training INT8 with light calibration. If the
device features sparsity-aware NPUs, increase sparsity
and re-evaluate ECE and tail latency before raising k or
ANN effort.

5.2. Index Selection Under Constraints

HNSW offers strong recall at small catalog sizes and
low batch sizes due to its graph-locality and tunable
efSearch [8]. IVF-PQ scales better in RAM, compressing
vectors aggressively at modest recall cost [7]. Our results
show a practical rule of thumb: prefer HNSW when
N < 1-2M and memory is not critically constrained;
switch to IVF-PQ when N grows or the resident memory
budget is tight. Remember that ANN recall interacts
with the reranker’s k: if IVF-PQ codes are aggressive,
raising k slightly (e.g., 20 — 30) may be cheaper than
loosening PQ settings.

5.3. Caching and Telemetry

Caches lift throughput under repetitive workloads by
eliminating encode, ANN, and rerank for popular
contexts. The challenge is to preserve correctness as
catalogs evolve. We therefore include versioned cache
entries and short time-to-live windows; invalidations
occur upon index refresh. Telemetry is the second
pillar: per-request confidence, latency, cache outcome,

International Journal of Industrial Engineering and Construction Management

and ANN effort (efSearch or nprone) enable: (i) gover-
nance—demonstrating that thresholds and abstention
policies are followed; (ii) capacity planning—identifying
burst patterns and right-sizing batches; and (iii) drift
detection—watching confidence histograms for shifts
that merit recalibration or profile changes. Lightweight
counters (e.g., RAPL) make energy visible with negligible
overhead [2].

5.4. Calibration, Threshold Portability,
and Human-in-the-Loop

Calibrated students support portable thresholds: the
same (Oauto, Oreview) can be applied across sites and device
models with bounded error inflation. This is essential
for operational trust. In practice, we recommend a
three-zone policy: (1) auto-accept above Q105 (2) gray
zone where a cheap secondary check (alias dictionary or
rule) is applied; (3) abstain below 6review to route for
human verification. This policy aligns with service-level
agreements and reduces the need to over-provision ANN
effort or k to chase diminishing returns at the top end.

5.5. Operational Playbooks

From a practitioner’s perspective, a few playbooks
emerged:

e Latency spike playbook. First, check cache hit
rates; second, reduce ANN effort (efSearch/nprobe);
third, temporarily lower k; finally, enable more
aggressive batching if p95 remains within SLA.

e Energy cap playbook. Switch to a tighter profile
(Section 3.9.), prefer IVF-PQ over HNSW, and reduce
batch size if thermal throttling triggers. Revisit
thresholds to avoid wasted reranking on low-confidence
cases.

e Catalog growth playbook. Rebuild IVF centroids
offline; ship delta indexes and trigger versioned cache
invalidation. If recall dips, bump 7probe slightly before
increasing k.

5.6. Limitations and Threats to Validity

Our evaluation focuses on single-language settings with-
out code-switching; multilingual conclusions rely on prior
art and teacher choice rather than on-device cross-lingual
trials. Hardware profiles reflect one embedded SoC;
other NPUs/ISAs may favor different sparsity patterns
or quantization schemes. Macro-F1 does not fully
capture utility in highly skewed catalogs; entity-level
cost weighting could change preferred operating points.
Finally, our calibration uses temperature scaling over
held-out data; in extreme domain shifts, vector-scale
calibration or per-topic scaling may be preferable.

J. Rahebi et al.

5.7. Privacy, Safety, and Governance

Edge deployments often exist precisely to keep data on
device. Our design logs only hashed context identifiers
and minimal metrics, supports fully offline operation, and
signs models and indexes to prevent tampering. Selective
abstention acts as a safety brake for ambiguous cases.
For regulated environments, we recommend periodic
audits of confidence distributions and error cases, along
with role-based access to telemetry and cryptographic
attestation of binaries.

5.8.

The bibliometric baseline by Shayegan & Mohammad
[12] traces how semantic enrichment research diversified
across methods (from rule-based annotators to neural
linkers) and domains (GLAM, enterprise, social plat-
forms). Our contribution is an operational instantiation
of that trajectory outside the data center: we show that
compression (INT8, pruning, distillation), memory-frugal
ANN search, and post-hoc calibration jointly preserve
most of the accuracy of modern pipelines while meeting
edge constraints on latency, energy, and privacy. In
this sense, our work supplies the engineering pattern
that complements the macro-level trends highlighted by
Shayegan & Mohammad [12].

Relation to the Base Paper

5.9. Implications for Future Work

Three directions appear most promising. First, vector-
scale calibration that adjusts norms/temperatures per
semantic region could stabilize thresholds under drift
without retraining. Second, adaptive indexing that
modulates nprobe Or efSearch based on confidence or
cache history could tighten tail latency budgets further.
Third, co-designed students that exploit N:M sparsity
and quantization-friendly blocks at pretraining time
may unlock another accuracy—efficiency step. Beyond
modeling, policy-aware abstention that considers
downstream costs (human review, SLA penalties) would
align calibration with business objectives.

5.10. Takeaways

For teams pushing enrichment to the edge, a pragmatic
recipe emerges: distill first, prune moderately, quantize
to INTS, choose ANN to fit memory (HNSW for small
catalogs, IVF-PQ for large), calibrate once and monitor
confidence drift, and use caching plus micro-batching
to smooth bursts. This combination consistently lands
on a favorable Pareto frontier across our corpora while
preserving auditability and privacy.

International Journal of Industrial Engineering and Construction Management

6. Conclusion

This work has presented a practical recipe for edge-ready
semantic enrichment that combines three complementary
compression levers—post-training INT8 quantization,
moderate magnitude pruning, and knowledge distil-
lation—with a memory-frugal approximate nearest
neighbor (ANN) layer and a distilled micro cross-encoder,
all governed by post-hoc calibration and lightweight
telemetry. Across three edge-like corpora (technical
manuals, incident tickets, and IoT logs), our results
demonstrate that a carefully composed pipeline can
retain 93-96% of a full-precision baseline’s macro-F1
while reducing energy by up to two-thirds, and doing so
under predictable tail-latency constraints. In short, the
data-center class of neural entity linking is now attainable
on embedded hardware when the system is co-designed
around compression, indexing, calibration, and caching.

What this changes in practice. The proposed recipe
turns efficiency from an ad hoc afterthought into a
first-class design axis. Practitioners gain (i) portable
thresholds enabled by calibration, which stabilizes
decisions as models and workloads evolve; (ii) configurable
profiles that trade accuracy for energy or latency with
a small set of interpretable dials (embedding dimension,
ANN effort, top-k, and confidence thresholds); and (iii)
operational guardrails—telemetry for governance and
versioned caches for safe, incremental index updates.
These ingredients make it feasible to deploy enrichment in
privacy-sensitive or connectivity-limited settings without
resorting to brittle rules or frequent cloud roundtrips.

Limitations. Our evaluation targets single-language
deployments on one embedded SoC profile; results
may vary with other NPUs/ISAs, sparsity kernels, or
multilingual workloads. Macro-F1, while informative,
underweights rare but critical entities; cost-weighted or
task-specific metrics may shift optimal operating points.
Calibration relied on temperature scaling; extreme
distribution shift could require vector-scale or group-wise
calibration strategies.

Recommendations. For most edge scenarios, we
recommend the following sequence: (1) distill a compact
student from a strong teacher; (2) prune moderately
(30-40%) with a brief recovery phase; (3) apply
post-training INT8 quantization; (4) choose ANN to
fit memory (HNSW for small catalogs, IVF-PQ for
large) and tune effort before increasing top-k; (5)
calibrate once on a small validation slice and monitor
confidence drift; (6) enable an LRU cache with versioned
invalidation to harvest locality without sacrificing
correctness. This sequence consistently landed on
favorable accuracy-latency—energy Pareto frontiers in
our experiments.

Broader context. The bibliometric perspective
highlighted by Shayegan & Mohammad [12] underscores

J. Rahebi et al.

the rapid diversification of semantic enrichment across
domains and modalities. Our contribution operational-
izes that trend beyond the data center by offering an
implementable, reproducible pattern for constrained
devices—one that preserves auditability and privacy
while sustaining modern neural accuracy.

Future work. Three directions appear most impactful:
(i) wvector-scale calibration to improve threshold portabil-
ity under drift without retraining; (ii) adaptive indezxing
and reranking, where ANN effort and top-k respond to
online confidence and cache state to control p95 latency;
and (iii) hardware-aware student architectures (e.g., N:M
sparsity, quantization-friendly blocks) co-designed with
edge compilers. Longer term, we envision heterogeneous
offloading that opportunistically shifts stages between
device and near-edge nodes, guided by telemetry and
policy, and policy-aware selective prediction that aligns
abstention with downstream costs.

In closing, our study shows that edge deployment of
neural enrichment is not merely feasible but practical
when compression and calibration are treated as core
systems design principles. We release scripts for
reproducing figures and tables under this template and
intend to extend the artifact with reference profiles for
additional hardware targets and multilingual settings.

References

[1] Conneau, A., Khandelwal, K., Goyal, N., et al. (2020).
Unsupervised cross-lingual representation learning at
scale (XLM-R). In ACL.

[2] David, H., Gorbatov, E., Hanebutte, U. R., Khanna, R.,
& Le, C. (2010). RAPL: Memory power estimation and
capping. Intel Technology Journal, 14(3), 46-59.

[3] Han, S., Mao, H., & Dally, W. J. (2016). Deep
compression: Compressing deep neural networks with
pruning, trained quantization and Huffman coding. In
ICLR.

[4] Hinton, G., Vinyals, O., & Dean, J. (2015). Distilling
the knowledge in a neural network. NeurIPS Workshop.

[5] Jacob, B., Kligys, S., Chen, B., et al. (2018).
Quantization and training of neural networks for efficient
integer-arithmetic-only inference. In CVPR.

[6] Jiao, X., Yin, Y., Shang, L., et al. (2020). TinyBERT:
Distilling BERT for natural language understanding. In
EMNLP.

International Journal of Industrial Engineering and Construction Management

[7] Johnson, J., Douze, M., & Jégou, H. (2019). Billion-scale
similarity search with GPUs (FAISS). IEEE Transactions
on Big Data, 7(3), 535-547.

[8] Malkov, Y. A., & Yashunin, D. A. (2018). Efficient
and robust approximate nearest neighbor search using
HNSW. [EEE TPAMI, 42(4), 824-836.

[9] Pires, T., Schlinger, E., & Garrette, D. (2019). How
multilingual is multilingual BERT? ACL.

[10] Sanh, V., Debut, L., Chaumond, J., & Wolf, T.
(2019). DistilBERT, a distilled version of BERT.
arXiw:1910.01108.

[11] Sennrich, R., Haddow, B., & Birch, A. (2016). Neural
machine translation of rare words with subword units.
In ACL.

[12] Shayegan, M. J., & Mohammad, M. M. (2021, May).
Bibliometric of semantic enrichment. In 2021 7th
International Conference on Web Research (ICWR) (pp.
202-205). IEEE.

[13] Sun, Z., Yu, H., Song, X., et al. (2020). MobileBERT: a
compact task-agnostic BERT for resource-limited devices.
In ACL.

[14] Wolf, T., Debut, L., Sanh, V., et al. (2020). Transformers:
State-of-the-art natural language processing. In EMNLP
demo.

[15] Kudo, T., & Richardson, J. (2018). SentencePiece: A
simple and language independent subword tokenizer and
detokenizer for neural text processing. In EMNLP.

[16] Feng, F., Yang, Y., Cer, D., et al. (2020).
Language-agnostic BERT sentence embedding (LaBSE).
arXw:2007.01852.

[17] Bernhardsson, E. (2015). Annoy: Approximate nearest
neighbors in C++/Python. GitHub repository.

[18] Guo, R., Sun, P., Lindgren, E., et al. (2020). Accelerating
large-scale inference with anisotropic vector quantization
(ScaNN). MLSys.

[19] ONNX Runtime: High-performance inference engine.
https://onnzruntime.ai.

[20] NVIDIA TensorRT Developer
https://docs.nvidia.com/deeplearning/tensorrt.

[21] Google Coral Edge TPU Documentation.
https://coral.ai.

[22] Piccinno, F., & Ferragina, P. (2014). From TAGME to
WAT: A new entity annotator. In ESWC.

[23] Peters, M., Neumann, M., Iyyer, M., et al. (2018). Deep
contextualized word representations. In NAACL.

[24] LeCun, Y., Denker, J. S., & Solla, S. A. (1990). Optimal
brain damage. In NeurIPS.

Guide.

