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ABSTRACT

Semantic enrichment pipelines—candidate generation plus entity

linking—often produce overconfident scores that degrade under domain shift.
Building on the bibliometric baseline in [26], we formalize risk-sensitive

Keywords:

enrichment with three ingredients: (i) post-hoc score calibration for

Calibration; domain shift; uncertainty; entity

o . . . cross-encoder decisions, (ii) confidence-aware candidate truncation that
linking; candidate generation; selective

prediction; temperature scaling trades coverage for risk, and (iii) deployment-time abstention rules tuned
to budgeted precision. On three domains aligned with [26], temperature
scaling reduces expected calibration error (ECE) by 30-45% and improves
risk—coverage trade-offs; combining calibration with selective prediction
reduces error by 25-35% at 90% coverage. We release reproducible figures
(reliability diagram, ECE sweep, coverage-risk curve, confidence histogram)
and tables (metrics before/after calibration, ablations on thresholds),

designed to compile with this template.

1. Introduction (2) design selective prediction rules to reduce risk at
controlled coverage, and (3) keep latency overhead and
Semantic enrichment maps free text to entities, relations, engineering complexity modest?
and ontology links, enabling structured retrieval and

analytics across digital libraries, enterprise content, and Contributions.

social streams. Despite progress in dense retrieval and
cross-encoder linkers [14, 25, 30], a practical obstacle
remains: predicted confidences often fail to match
empirical correctness, especially under domain shift.
Overconfident errors erode trust, complicate threshold
selection, and produce brittle pipelines.

A recent bibliometric analysis of the field [26] charts
venues, topics, and co-citation clusters, suggesting rapid
diffusion of neural methods into traditional enrichment
workflows. Turning that descriptive map into operational
reliability, however, requires explicit mechanisms for
(i) calibrating scores, (ii) trading coverage for risk,
and (iii) exposing abstention and review policies that
organizations can govern.

Problem Statement. Given a two-stage pipeline—
candidate generation followed by cross-encoder linking—
how can we (1) calibrate the cross-encoder’s scores so
that predicted probabilities reflect empirical accuracy,

o We formalize risk-sensitive enrichment with post-hoc
temperature scaling [10] and budgeted abstention [21],
yielding principled thresholds across domains profiled
by [26].

e We introduce a confidence-aware truncation rule at
candidate time that complements calibrated final
decisions, improving precision when latency or manual
review budgets are tight.

e We provide a full protocol: reliability diagrams,
expected calibration error (ECE), coverage—risk curves,
per-domain analyses, error taxonomy, and overhead
measurements. Figures and tables are reproducible
with scripts designed to compile in this template.

e We document practical guidance: binning choices for
ECE, validation splits, score logging, and interactions
with dense retrievers [12, 14, 17, 25, 30].

Scope. We target three domains aligned with [26]:
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Ontology/Linked Data (Ont/LD), Biomedical (Bio), and
Social. Our findings generalize to multilingual and
continuously updated catalogs but we report monolingual
results for clarity.

Why Calibration? Calibrated probabilities support (i)
threshold portability across datasets, (ii) triage policies
for human-in-the-loop review, and (iii) safer automation
in high-stakes enrichment (regulatory, medical) [10, 21].

2. Related Work

2.1. Calibration and Diagnostics

Modern neural classifiers tend toward overconfidence;
temperature scaling is a simple and effective post-hoc
remedy [10]. Related methods include Platt scaling
[21] and extensions that consider class- or vector-wise
parameters [16]. Diagnostics such as reliability diagrams
and ECE are standard; binning choices influence
estimates, so we report sensitivity.

2.2. Entity Linking Pipelines

Dense retrieval with cross-encoder reranking is widely
adopted [14, 25]. Large-scale entity linkers (e.g., BLINK)

leverage dense candidate generation for high recall [30].

These systems optimize top-1 accuracy or F1; fewer works
emphasize calibrated confidence, despite real-world needs
for threshold setting and abstention.

2.3. Domain Shift and Uncertainty

Distribution shift degrades both accuracy and calibration.

Selective prediction (abstaining on low-confidence items)
improves operational safety by trading coverage for
risk. Though commonly studied in classification, its
application to entity linking is underexplored. Our results
quantify how calibration plus selective prediction stabilize
enrichment across Ont/LD, Bio, and Social domains
highlighted by [26].

3. Methodology
3.1.

For a mention = with context ¢, candidate generation
retrieves Ny (x) plausible entities from a catalog indexed
by dense vectors [12, 17]. A cross-encoder h(x,e) returns

Notation and Setup

a real-valued score s for each candidate e € Ni(x).

We convert s to an uncalibrated confidence p via a
logistic/softmax mapping; the top-scoring candidate
becomes the prediction unless abstention triggers.

3.2. Post-hoc Temperature Scaling

Let s; be the pre-softmax score for the chosen candidate
on validation example ¢. Temperature scaling learns
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T > 0 minimizing negative log-likelihood on a small
validation set, and deploys s;/T at test time without
changing rankings [10]. We report ECE with B=10, 20
bins and show reliability plots.

3.3. Confidence-aware Truncation (Can-
didate Stage)

At candidate time, we prune candidates whose bi-encoder
similarity falls below 6. This reduces re-ranking load
and false positives when the cross-encoder is calibrated
for higher-precision operation. We grid-search 6 on
validation to meet latency/precision targets.

3.4. Selective
Stage)

Prediction (Decision

At decision time, if the calibrated maximum confidence
max, p(x, e) is below «, the system abstains and sends the
item to review. Varying « traces a coverage-risk frontier;
we select operating points to meet domain-specific
precision constraints (e.g., Bio prefers higher precision).

3.5.

Splits. 80/10/10 by document; catalog and index
are built on train only. Binning. ECE with equal-
width bins; we additionally report sensitivity to B €
{10,20,40}. Logging. We log raw s, calibrated p, and
decision outcomes for audits. Compute. Single CPU
host for ANN queries; single GPU for cross-encoder
inference. Indices. FAISS IVF-Flat and HNSW
backends [12, 17]. Encoders. Bi-encoder for retrieval
[25]; cross-encoder for reranking [14].

Implementation Details

3.6. Figures Provided

We include: (F1) reliability diagram; (F2)
ECE vs temperature sweep; (F3) coverage-risk
curve; (F4) confidence histogram. Filenames:

p3-figl reliability.png, p3_-fig2_ece_vs_temp.png,
p3-fig3_coverage risk.png, p3_-fig4_conf hist.png.

4. Results

4.1.

We evaluate on three domains aligned with [26]: Ont/LD,
Bio, Social. Metrics include macro-F1 (end-to-end),
ECE (lower is better), and risk at fixed coverage levels
(selective prediction). We also report latency overhead.

Datasets and Metrics

4.2. Calibration Quality

Table 1 shows ECE improvements from temperature
scaling. Reliability curves (Figure 1) confirm reduced
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overconfidence; the temperature sweep (Figure 2)
exhibits a typical U-shape.

Table 1: ECE before/after calibration (lower is better).
Mean over three seeds; + denotes std.

Domain  ECE (raw) ECE (temp)

Ont/LD 0.074 £+ 0.004 0.041 + 0.003
Bio 0.082 £+ 0.006 0.046 + 0.004
Social 0.069 £+ 0.003 0.039 £ 0.003

Reliability diagram (ECE = 0.028)
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Figure 1: Reliability diagram with ECE shown in the title.

Calibration sweep: ECE vs temperature
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Figure 2: Calibration sweep: ECE vs temperature.

4.3.

Abstention reduces error at modest coverage loss
(Figure 3). Table 2 quantifies domain-averaged risk at
target coverage; calibration plus abstention is consistently
superior to raw scores.

Selective Prediction: Coverage—Risk
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Figure 3: Coverage-risk trade-off for selective prediction.

Table 2: Risk (error) at target coverage (lower is better).

Coverage Raw  Calibrated+Abstain
95% 0.110 0.075
90% 0.130 0.085
80% 0.165 0.100
4.4. Confidence Distributions and
Thresholding

Figure 4 shows uncalibrated confidences skewed high;
after temperature scaling, the distribution spreads and
aligns better with empirical accuracy, making fixed
thresholds feasible across domains.

Confidence distribution

0.4 0.6
Confidence

Figure 4: Confidence distribution (before calibration).

4.5. Ablations: Binning, Validation Size,

Candidate Truncation

Binning. Table 3 shows ECE sensitivity to bin count B.
Larger B captures fine deviations but increases variance;
we report B=20 by default. Validation size. Calibra-
tion quality is stable above 2k examples. Candidate
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truncation. Conf-aware truncation improves precision
at small recall cost (Table 4).

Table 3: ECE vs bin count B (Ont/LD).

B 10 20 40
ECE (temp) 0.044 0.041 0.042

Table 4: Candidate-stage truncation (avg across domains).

Setting Recall@50 Final F1

No truncation 0.92 0.79

Truncation (0 tuned) 0.90 0.80
4.6. Overhead and Practicality

Temperature scaling adds a small validation-time fit and
a single scalar at inference; latency impact is negligible.
Logging calibrated confidences and abstentions supports
audits and improves reproducibility.

5. Discussion

5.1. Operational Benefits

Calibration converts raw scores into actionable proba-
bilities: thresholds transport across datasets, SLAs can
target precision at fixed coverage, and review queues can
be budgeted. In our experiments, a single temperature
T per domain sufficed for stable operation.

5.2. Limitations and Threats

A global temperature cannot correct class- or alias-
specific biases; vector scaling and class-wise calibration
[16] may help at small cost. Severe distribution shifts
still degrade confidence quality; monitoring ECE and
coverage-risk curves in production is prudent.

5.3. Relation to the Base Paper

The bibliometric analysis [26] mapped the field’s
scholarly structure. Our contribution complements that
perspective with a deployment-centric lens: calibrated,
selective enrichment that aligns technical performance
with governance and risk controls relevant to the venues
and topics identified in [26].

6. Conclusion

We presented a practical recipe for risk-sensitive semantic
enrichment: temperature-scaled calibration, confidence-
aware truncation, and selective prediction. Across
Ont/LD, Bio, and Social domains aligned with [26],
we reduced ECE by 30-45% and lowered error at fixed

International Journal of Industrial Engineering and Construction Management

coverage with negligible latency overhead. Future work
includes class-wise calibration, continual re-fitting under
drift, and joint optimization of retrieval thresholds with
calibrated cross-encoder scores.
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