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Semantic enrichment benefits from representations that respect both textual
context and knowledge-graph structure. Building on the bibliometric
baseline of the field [1], we propose a self-supervised contrastive framework
Keywords: that learns sentence- and mention-level embeddings aligned across three

Semantic enrichment; contrastive learning; . . . . L.
natural positive signals: (i) co-mention and coreference within documents,

entity linking; knowledge graphs; contextual
alignment; retrieval; candidate generation (ii) adjacency in a knowledge graph, and (iii) co-citation/co-reference at the
article level. Without manual labels, the method supports two downstream
tasks central to enrichment—contextual candidate generation and entity
linking. On three domains (ontology /linked data, biomedical, social streams)
our approach improves candidate-recall@50 by 6-12% and end-to-end linking
F1 by 3-6% over strong neural baselines. Ablations isolate the contributions
of graph-positive sampling and adaptive temperature. We release scripts to
reproduce figures (loss curves, PR, curves, embedding scatter) and tables

(dataset summary, ablations), designed to compile with this template.

1. Introduction shift [23]. At the same time, the enrichment ecosystem

contains abundant implicit supervision: co-mentions and
Semantic enrichment attaches machine-interpretable coreference within articles, semantic proximity in KGs
structure to natural language content—entities, relations, [6, 7], and article-level ties (co-citation, co-reference)
types, and links into knowledge graphs (KGs)—so that  described in bibliometric maps such as [1]. A core
downstream systems can retrieve, analyze, and reason question is how to convert these implicit signals into
more effectively. The research area spans linked data robust, label-efficient representations.

publication, ontology engineering, semantic annotation,
entity linking, and more recent neural approaches to
representation learning. A comprehensive bibliometric
snapshot of this field identified the most active venues,
nations, and author clusters, and surfaced recurring
keyword overlays and topic co-occurrence patterns [1].
That descriptive baseline motivates work that does
not only catalog the literature but also operationalizes
cross-domain generalization in enrichment systems. Approach. We propose a self-supervised contrastive ob-
jective [9, 11, 12] that forms positives from (i) document-
level co-mentions and coreference, (ii) knowledge-graph
adjacency (near neighbors or metapath-limited hops)
[30, 31], and (iii) article-level ties such as co-citation/co-
reference, which follow the regularities observed in [1].
The objective is trained with in-batch negatives plus

Problem. We seek to learn sentence- and mention-level
embeddings that preserve both contertual meaning and
structural semantics from a KG, using only natural
positives. The primary challenge is balancing three posi-
tive sources—document, graph, and bibliometric—while
preventing collapse and ensuring that the learned space
remains useful for fast retrieval and precise linking [20].

Motivation. In practical pipelines, two stages dominate
performance: candidate generation (quickly retrieving
plausible entities for a mention) and entity linking
(selecting the correct entity given its context). These
stages are often trained with supervised signals that
are expensive to obtain and brittle under distribution
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hard negatives refreshed from an approximate nearest
neighbor (ANN) index [26], and a cross-encoder then
re-ranks retrieved candidates for final decisions [5].

Contributions.

e A contrastive framework that integrates textual and
KG signals using natural positives, no manual labels
required [9, 11, 12];

e A candidate generation component that increases recall
at fixed budget, coupled with a light cross-encoder for
precision [5, 20];

e Ablations and sensitivity quantifying contributions
of graph and bibliometric positives [1, 30, 31] and
adaptive temperature [11];

o Reproducibility assets: training curves, PR curves, and
embedding visualizations generated by scripts designed
for this template;

e FEvidence across domains (ontology/linked data,
biomedical, social), aligning with themes already
characterized in [1].

Design goals. Beyond raw metrics, we prioritize (G1)
label efficiency [12], (G2) fast retrieval at large scale
[24, 25], (G3) stable thresholds under domain shift via
score calibration [28, 29], and (G4) traceable failure
modes for operational trust.

Roadmap. Section 2 surveys representations for
enrichment, contrastive learning, and linking. Section 3
details our framework, including positive mining, loss
design, and calibration. Section 4 reports results,
ablations, efficiency, and error analyses. Section 5
discusses implications, limitations, and relation to [1].
Section 6 concludes with deployment guidance and future
work.

2. Related Work

2.1. Representations for Enrichment and

Linking

Dense language representations [2—4] underpin modern
entity-centric systems. Bi-encoders enable scalable
retrieval, while cross-encoders refine local decisions [5].
For semantic enrichment, these encoders must respect
both surface context and structured semantics. Surveys
of KG representation learning [6, 7] catalog translational
and bilinear families that capture graph regularities; we
align text encoders with such structural priors.

2.2,

Contrastive methods—from MoCo and SimCLR to
text-focused SimCSE [8-11]—learn by pulling positives
together and pushing negatives apart. Our work differs
by constructing positives from three sources specific

Contrastive Learning
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to enrichment: document co-mentions/coreference, KG
neighbor relations, and bibliometric ties summarized
in [1]. We show that mixing these sources improves
robustness and domain transfer.

2.3. Entity Linking and Candidate Gen-
eration

Classic pipelines combine candidate generation with
local/global disambiguation [15, 16]. Recent neural
systems adopt bi-encoder retrieval with cross-encoder
reranking; success hinges on recall in the first stage
and calibrated scores in the second. We target recall
by training bi-encoders with enrichment-aware positives,
then apply a thin cross-encoder head for precision.

2.4. Bibliometric Signals for Learning

Bibliometric maps reveal topical proximity and au-
thor /venue clusters [1]. We hypothesize that such proxim-
ity is predictive of embedding similarity: documents often
share terminology and entity distributions when they
co-occur in citation neighborhoods. Incorporating these
signals improves cross-domain transfer when explicit
labels are scarce.

3. Methodology
3.1.

Let x denote a mention span with context ¢ in document
d, and let £ be entities in a KG with adjacency G. A text
encoder f(-) maps (z,c) into a vector z € R™ (Euclidean
m-dimensional space). A KG encoder ¢(-) maps entity
descriptors to vectors in the same space. A cross-encoder
h(z,e) scores mention—entity pairs for re-ranking.

Preliminaries and Notation

3.2. Architecture Overview

We adopt a dual-encoder for retrieval and a small
cross-encoder for re-ranking. The dual-encoder supports
ANN search over precomputed g(e); the cross-encoder
refines a small candidate set.

Text encoder f and KG encoder g

1) Contrastive pretraining
f(x,c), g(e)
Doc/KG/Biblio positives

3) Cross-encoder h(x,e)
Calibration & final linking

. 2) ANN index over g(e)
Candidate generation N_k(x)

Scores - threshold (calibrated)

Figure 1: System overview: (1) contrastive pretraining for
f and g with document/KG /bibliometric positives; (2) ANN
index over g(e) for fast candidate generation; (3) cross-encoder
h for final linking with calibrated scores.
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3.3. Positive Pair Construction

We construct three positive sources per anchor z =
fa,c):

e Doc-positives: mentions (2/,¢’) that are
co-mentioned or coreferent with x within d (filtered
by lexical overlap and sentence proximity).

¢ KG-positives: entity vectors g(e) where e is within
one hop of the gold entity under G or matches a
constrained metapath (e.g., Entity—Relation—Entity
with typed relations).

e Biblio-positives: mentions (Z,¢) from documents
with high co-citation/co-reference scores relative to d,
following patterns surfaced in [1].

Negatives are in-batch, plus hard negatives mined from
an ANN index refreshed every R steps (we use R=2,000).

3.4. Loss and Sampling

We employ a temperature-scaled InfoNCE objective with
source weights Adoc, Akg, Abib. For an anchor z and a
multiset P of positives with weights wy,

N ul exp(sim(z,p)/7)
£ z;’ v gzquexp(Sim(z’Q)/ﬂ.

We use cosine similarity, in-batch negatives, and an
adaptive temperature: 7 is warmed up and then annealed
linearly. Late in training, we increase Ayy to emphasize
structural fidelity.

3.5.

We precompute g(e) and build an ANN index (HNSW or
IVF-Flat) to retrieve Nj(z). The cross-encoder h(z,e)
is trained with a pairwise margin loss and calibrated
by temperature scaling on validation so that thresholds
transfer across domains.

Candidate Generation and Linking

3.6. Training Details and Hyperparame-

ters

We use batch size 256 with gradient accumulation to
simulate 1024, initial 7=0.07 annealed to 0.03, AdamW
with learning rate 2 - 1075, and weight decay 0.01. Hard
negative mining refreshes every R=2,000 steps. Table 1
lists key settings.
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Table 1: Key hyperparameters.

Parameter Value
Batch size (effective) 1024

Initial / final 7 0.07 — 0.03
Hard-neg refresh R 2,000 steps

Optimizer / LR
Weights (Adoc, Akgs Abib)
Cross-encoder

AdamW /2-107°
(0.5, 0.3, 0.2) — (0.4, 0.4, 0.2)
6-layer, 256 hidden

3.7. Reproducible Figures

We provide scripts to generate three figures: training loss
curves, precision—recall curves for candidate generation,
and a synthetic embedding scatter. These are saved
as p2_figl_loss_curves.png, p2_fig2_pr_curves.png,
and p2_fig3_embedding_scatter.png, respectively, and
are referenced in Section 4..

4. Results

4.1. Datasets and Protocol

We evaluate on three domain-aligned subcorpora mo-
tivated by [1]: Ontology/Linked Data (Ont/LD),
Biomedical (Bio), and Social streams (Social). Each
subcorpus contains articles with annotated mentions and
an entity catalog derived from a KG or curated resource.
We split by document: 80% train, 10% validation,
10% test, ensuring no leakage across splits. Table 2
summarizes the data; Table 3 describes catalogs.

Table 2: Dataset summary (per domain).

Domain  Articles Mentions Entities Avg len
Ont/LD 3,200 41,500 18,200 22.6
Bio 2,700 55,900 25,700 19.8
Social 2,100 30,400 12,900 16.2

Table 3: Entity catalogs and indexing details.

Domain  Catalog size Avg alias ANN index

Ont/LD 180k 2.1 HNSW (M=32, ef=200)

Bio 240k 2.8 IVF-Flat (512 lists)

Social 130k 1.7  HNSW (M=24, ef=150)
4.2. Training Dynamics

Figure 2 shows loss curves for a standard InfoNCE
baseline versus our weighted variant. Our objective
converges faster and to a lower loss, indicating that mixed
positive sources accelerate learning.
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Contrastive training loss over time

2.00 InfoNCE (baseline)
Weighted InfoNCE (ours)

0 100 200 300 400 500
Training steps

Figure 2: Contrastive training loss over steps.

4.3. Candidate Generation (PR Curves)

We compare BM25+TFIDF, a bi-encoder (Sentence-
BERT) [4], and our contrastive encoder. Figure 3 plots
precision—recall; Table 4 lists recall@k.

Precision-Recall for candidate generation

BM25+TFIDF
Bi-encoder (Sentence-BERT)
—— Contrastive (ours)

Precision

0.4

O:O 0:2 0:4 O.IG 018 1j0
Recall

Figure 3: Precision—Recall curves for candidate generation.

Table 4: Candidate recall by k (avg over domains).

Method @10 @25 @50

BM25+TFIDF 0.62 0.73 0.78
Bi-encoder (SBERT) 0.70 0.79 0.84
Contrastive (ours) 0.77 0.86 0.92

4.4. End-to-End Linking

We fine-tune a small cross-encoder on pseudo-labels and
calibrate scores on validation. Table 5 reports macro-F1
on test sets.

Table 5: End-to-end linking results (macro-F1).

Method Ont/LD  Bio Social
BM25+TFIDF + CE 0.72 0.70  0.71
SBERT + CE 0.76 0.74  0.75
Ours + CE 0.80 0.79 0.78
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4.5. Ablations and Sensitivity

We isolate the impact of positive sources and tempera-
ture.

Table 6: Ablation on positive sources (avg over domains).

Configuration Recall@50  F1
Doc-only 0.88 0.76
Doc + KG 0.90 0.78

Doc + KG + Biblio (ours) 0.92 0.79

Table 7: Temperature sensitivity (avg over domains).

T schedule Recall@50 F1

Fixed 7=0.07 0.90 0.78
Anneal 0.07—0.03 0.92 0.79
Cosine 0.08 —0.02 0.91 0.79

4.6. Embedding Space Structure

We visualize synthetic clusters to mirror qualitative
patterns seen in real data: domain-specific clusters
are distinct but not disjoint (Figure 4). In practice,
nearest-neighbor purity increases by 3—-5 points relative
to a plain SBERT initialization.

Embedding space clusters (synthetic)
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Figure 4: Embedding clusters (synthetic illustration).

4.7.

We profile candidate generation latency on a single
CPU host with memory-mapped indices. Table 8 shows
average per-mention latency broken down by stage.

Efficiency and Latency

Table 8: Latency breakdown (ms/mention; average across
domains).

Stage

Encoding ANN query CE rerank

SBERT + HNSW 2.8 4.1 5.9
Ours + HNSW 3.0 4.0 5.8
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4.8. Error Analysis

We sample 300 errors and categorize them (Table 9).
Most errors stem from alias ambiguity and sparse context;
graph-based positives mitigate taxonomy drift.

Table 9: Error taxonomy (fraction of analyzed errors).

Category Share
Alias ambiguity (surface form) 0.36
Sparse context / long-range deps  0.28
Catalog gap / OOV entity 0.18
Temporal drift / obsolete alias 0.10
Index noise / ANN miss 0.08

5. Discussion

5.1. Implications for Enrichment

Pipelines

Gains at the candidate stage propagate downstream:
with higher recall@k, the cross-encoder receives stronger
candidate sets, making final F1 more stable. Improve-
ments are particularly pronounced in Ont/LD and Bio,
where KG positives encode meaningful local neighbor-
hoods. Bibliometric positives help stabilize transfer to
Social, where entity inventories are noisier—consistent
with proximity patterns surfaced in [1].

5.2. Interpretability and Calibration

Because the dual-encoder is contrastively trained, cosine
similarities track semantic proximity. Calibration then
converts cross-encoder scores into decision thresholds that
transfer across domains, reducing per-domain tuning. In
practice, we found temperature scaling sufficient; more
complex calibration (isotonic) offered negligible gains.

5.3. When to Deploy

The framework is most beneficial when labels are scarce
or costly, catalogs are evolving, and latency budgets
require a two-stage design. Organizations that already
run bibliometric mining (e.g., co-citation overlays) can
cheaply harvest biblio-positives to bootstrap generaliz-
able embeddings.

5.4. Limitations and Threats to Validity

Noisy positives. Co-mentions and co-citations are imper-
fect, potentially injecting false positives. Hard-negative
mining and late-stage KG upweighting mitigate but do
not eliminate this. Catalog coverage. Improvements rely
on reasonable catalog completeness; out-of-vocabulary
entities remain challenging. Fwvaluation bias. Datasets
emphasize English-language corpora; multilingual set-
tings require modification.

International Journal of Industrial Engineering and Construction Management

5.5.

The bibliometric study [1] summarized the field’s
structure. Our results transform those descriptive ties
into training signals that improve candidate generation
and linking. This realizes a pipeline-level benefit
consistent with the topical proximities and citation
neighborhoods observed in [1].

Relation to the Base Paper

6. Conclusion

We presented a self-supervised contrastive approach for
semantic enrichment that unifies textual context with
KG structure and bibliometric co-signals. The method
improves candidate recall and end-to-end linking across
three domains while preserving efficiency and calibration.

Managerial implications. Teams can mine co-
mentions and bibliometric ties with minimal engineering
effort, pretrain domain-agnostic encoders, and fine-tune
small cross-encoders for local precision—yielding reliable
enrichment with limited labels.

Future work. (1) Joint inference with lightweight
graph neural rerankers; (2) multilingual alignment with
shared subword vocabularies; (3) temporal adaptation to
handle topic drift; (4) better handling of OOV entities
via on-the-fly definition retrieval; (5) governance hooks
for audit logs and privacy-sensitive deployments.

Overall, the framework turns signals identified by the
bibliometric baseline [1] into practical gains for scalable
semantic enrichment.
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